# Why OFC?

### Manufacturability

### FDA class 1 limit

-3 dbm @ 0.2 NA

| NA  | 62.5 um | 50 um  |
|-----|---------|--------|
| 0.2 | 0.9 db  | 1.9 db |
| 0.3 | 1.5 db  | 3 db   |
| 0.4 | 2.3 db  | 5 db   |

#### Gaussian beam

100 um working distance

10 um laser aperture

Assume power is set at safety limit

With 50 um fiber worst case NA gives -8 dbm into fiber.

## **Other Penalties**

### **Extinction ratio**

$$= \frac{P_{lo}}{P_{hi}}$$

$$p = 10 \log \left[\frac{1 - 1}{1 + 1}\right]$$

$$= \frac{1}{2} \quad p = 5 \, db$$

With just allowances for NA variation and extinction ratio, 50 um fiber is unlikely.

Further allowances must be made for

- Laser variations with process, temperature, and lifetime.
- IC tolerances across arrays
- Packaging tolerances

# **OFC Design Issues**

### Pure ac coupled receiver design with LF cutoff > 1 MHz

When signal drops out, RX will eventually chatter.

### All digital OFC solution

More process options for IC's.

Can be executed as a separate IC.

Minimal risk of interoperability problems.

Looking for long term solution for multiple applications

# **Summary of Palm Springs Proposal**

- Single fiber designated as signaling fiber
  - -- must always be carrying clock or data
  - -- transparent once link is up
- Module must be provided with external clock
  - -- need not be transmitted
- Manchester coding on signaling channel
  - -- could be at fraction of clock rate



## **Status**

- c code specification of state machine available by ~ July 1
- Gate count derived from c code 300 gate equivalents In 0.8 um BiCMOS, 60 mA power dissipation when active
- For next meeting
   Error hazard calculated.
   All state machine parameters fixed.
   Power budget with OFC.
- Proceed with specifications for both OFC and non-OFC specifications.